881. Comparison of Reproducibility of VERSANT® HIV-1 RNA 3.0 Assay (bDNA) and COBAS AMPLICOR HIV-1 Monitor® Test, version 1.5 (UltraSensitive), on Samples with Low HIV-1 Viral Load

*Session: Poster Session: HIV: Diagnostics
*Saturday, October 8, 2005: 12:00 AM
*Room: Exhibit Hall A

Background: Accurate assays with good reproducibility are essential for measuring low HIV-1 RNA titers in plasma specimens of HIV-infected patients. We compared the VERSANT HIV-1 RNA 3.0 Assay (bDNA; Bayer HealthCare LLC, Tarrytown, NY) and COBAS AMPLICOR HIV-1 Monitor, v 1.5 (CAM; Roche Diagnostics, Branchburg, NJ) on samples with low HIV-1 viral load.

Methods: Multiple replicates of a test panel consisting of 5 dilutions (ranging from 150 to 5,000 copies/mL), prepared from a HIV-1 RNA-positive specimen (ProMedDx LLC, Norton, MA), were tested by both bDNA and CAM in 5 separate assay runs to assess assay reproducibility. In addition, reproducibility and failure rates of the 2 assays were evaluated by testing replicates of 21 clinical plasma samples with HIV-1 RNA levels <5,000 copies/mL.

Results: While both assays yielded a titer for each replicate of the HIV-1 test panel members ranging from 500 to 5,000 copies/mL, bDNA and CAM reported a titer in 92.5% (37/40) and 55.0% (22/40), respectively, of replicates at 150 copies/mL (P<0.001, Fisher’s exact test). Inter-assay precision was similar for both assays, but CAM had greater intra-assay variability (28.4% to 40.1%) than bDNA (13.7% to 27.8%). For test panel members, total %CV ranged from 14.9% to 40.1% for bDNA and from 33.5% to 51.1% for CAM. Among the clinical samples, total %CV for bDNA and CAM was 36.6% and 58.3%, respectively. Inter- and intra-assay %CV were 17.4% and 31.7% for bDNA and 0% and 58.3% for CAM, respectively. CAM had a test failure rate of 1.9% (“Invalid QS” in 4/210 tests) during initial testing of clinical samples, whereas bDNA showed no test failures with 3 results of “<75 copies/mL”. Bland-Altman plotting of intra-assay data showed greater variability for CAM than for bDNA as shown by the narrower ±2 S.D. limits for bDNA.

Conclusions: bDNA achieved a significantly higher success rate for quantification of HIV-1 RNA at level of 150 copies/mL, with lower variability at HIV-1 RNA levels ranging up to 5,000 copies/mL. With lower overall variability, bDNA appears to be a more robust assay than CAM for testing low HIV-1 viral load samples.

Danielle Smith, BS¹, Dilon Mason, BS¹, Eileen Fehskens, BS², Jeffrey Germer, BS³, Johan Surtihadi, PhD², **Joseph Yao, MD¹**, Rainer Ziermann, PhD⁴ and **J.D. Yao**, Bayer Diagnostics Grant recipient / Research support; Roche Molecular Diagnostics Grant recipient / Research support; **J.J. Germer**, None; **D.M. Smith**, None; **D.K. Mason**, None; **E. Fehskens**, Bayer Diagnostics Employee; **J. Surtihadi**, Bayer Diagnostics Employee; **R. Ziermann**, Bayer Diagnostics Employee., (1)Mayo Clinic, Rochester, MN, (2)Bayer Diagnostics, Berkeley, CA, (3)Mayo Clinic, Rochester, CA, (4)Bayer Health Care Diagnostics, Berkeley, CA